Australian Archaeology, the official publication of the Australian Archaeological Association Inc., is a refereed journal published since 1974. It accepts original articles in all fields of archaeology and other subjects relevant to archaeological research and practice in Australia and nearby areas. Contributions are accepted in eight sections: Articles (5000–8000 words), Short Reports (1000–3000), Obituaries (500–2000), Thesis Abstracts (200–500), Book Reviews (500–2000), Forum (5000), Comment (1000) and Backfill (which includes letters, conference details, announcements and other material of interest to members). Australian Archaeology is published twice a year, in June and December. Notes to Contributors are available at: <www.australianarchaeologicalassociation.com.au>. Australian Archaeology is indexed in the Arts and Humanities, Social and Behavioural Sciences, and Social Sciences Citation Indices of the Thomson Reuters Web of Knowledge, SCOPUS, Australian Public Affairs Information Service (APAIS), and Anthropological Literature and Anthropological Index Online. Australian Archaeology is ranked as a tier A journal by the European Reference Index for the Humanities and French Agence d’Evaluation de la Recherche et de l’Enseignement Supérieur. Subscriptions are available to individuals through membership of the Australian Archaeological Association Inc. or to organisations through institutional subscription. Subscription application/renewal forms are available at <www.australianarchaeologicalassociation.com.au>. Australian Archaeology is available through Informit and JSTOR. Design and Print: Openbook Howden Front Cover: Excavation in progress, Boodie Cave, Barrow Island (Kane Ditchfield, entered in the AAA2013 Photography Competition). All correspondence and submissions should be addressed to: Australian Archaeology PO Box 10, Flinders University LPO Flinders University SA 5048 Email: journal@australianarchaeology.com <http://www.australianarchaeologicalassociation.com.au> The views expressed in this journal are not necessarily those of the Australian Archaeological Association Inc. or the Editors.

© Australian Archaeological Association Inc., 2014 ISSN 0312-2417

Editors
Heather Burke Flinders University
Lynley Wallis Wallis Heritage Consulting

Editorial Advisory Board
Brit Asmussen Queensland Museum
Val Attenbrow Australian Museum
Huw Barton Leicester University
Noelene Cole James Cook University
Penny Crook La Trobe University
Ines Domingo Sanz University of Barcelona
Judith Field University of New South Wales
Joe Flatman University College London
Richard Fullagar University of Wollongong
Steve Free The Australian National University
Tracy Ireland University of Canberra
Judith Littleton University of Auckland
Marilyne Lombard University of Johannesburg
Alex Mackay University of Wollongong
Scott L’Oste-Brown Central Queensland Cultural Heritage Management
Jo McDonald The University of Western Australia
Patrick Moss The University of Queensland
Tim Murray La Trobe University
Jim O’Connell University of Utah
Sven Ouzman The University of Western Australia
Fiona Petchey University of Waikato
Amy Roberts Flinders University
Katherine Szabo University of Wollongong
Nancy Tayles University of Otago
Robin Torrence Australian Museum
Peter Veth The University of Western Australia
Alan Watchman Flinders University
David Whitley ASM Affiliates Inc.

Short Report Editor
Sean Winter The University of Western Australia

Book Review Editors
Alice Gorman Flinders University
Claire St George Wallis Heritage Consulting

Thesis Abstract Editor
Tiina Manne The University of Queensland

Editorial Assistant
Susan Arthure Flinders University

Commissioned Bloggers
Jacqueline Matthews The University of Western Australia
Michelle Langley The Australian National University
Table of Contents

Editorial | Heather Burke and Lynley A. Wallis

Articles

Pigment geochemistry as chronological marker: The case of lead pigment in rock art in the Urrmarning ‘Red Lily Lagoon’ rock art precinct, western Arnhem Land | Daryl Wesley, Tristen Jones and Christian Reepmeyer

Occupation at Carpenters Gap 3, Windjana Gorge, Kimberley, Western Australia | Sue O’Connor, Tim Maloney, Dorcas Vannieuwenhuyse, Jane Balme and Rachel Wood

The geoarchaeology of a Holocene site on the Woolshed Embankment, Lake George, New South Wales | Philip Hughes, Wilfred Shawcross, Marjorie Sullivan and Nigel Spooner

Short Reports

The first Australian Synchrotron powder diffraction analysis of pigment from a Wandjina motif in the Kimberley, Western Australia | Jillian Huntley, Helen Brand, Maxime Aubert and Michael J. Morwood

Re-evaluating the antiquity of Aboriginal occupation at Mulkas Cave, southwest Australia | Alana M. Rossi

Marcia biantina shell matrix sites at Norman Creek, western Cape York Peninsula | Grant Cochrane

Themed Section

Guest edited by Anne Clarke and Ursula K. Frederick

Signs of the times: An introduction to the archaeology of contemporary and historical graffiti in Australia | Ursula K. Frederick and Anne Clarke

Leaving their mark: Contextualising the historical inscriptions and the European presence at Ngiangu (Booby Island), western Torres Strait, Queensland | Jane Pyfe and Liam M. Brady

The ‘Outback archive’: Unorthodox historical records in the Victoria River District, Northern Territory | Darrell Lewis

‘We’ve got better things to do than worry about whitefella politics’: Contemporary Indigenous graffiti and recent government interventions in Jawoyn Country | Jordan Ralph and Claire Smith

Battlefield or gallery? A comparative analysis of contemporary mark-making practices in Sydney, Australia | Andrew Crisp, Anne Clarke and Ursula K. Frederick

Shake Well Midden: An archaeology of contemporary graffiti production | Ursula K. Frederick

Illicit autobiographies: 1980s graffiti, prisoner movement, recidivism and inmates’ personal lives at the Adelaide Gaol, South Australia | Rhiannon Agutter

Enmeshed inscriptions: Reading the graffiti of Australia’s convict past | Eleanor Conlin Casella
Thesis Abstracts

Book Reviews

Archaeology of the Chinese Fishing Industry in Colonial Victoria
by Alister M Bowen | Neville Ritchie

Mystery Islands: Discovering the Ancient Pacific by Tom Koppel | Matthew Spriggs

Prehistoric Marine Resource Use in the Indo-Pacific Regions edited by Rintaro Ono, Alex Morrison and David Addison | Mirani Litster

Late Holocene Indigenous Economies of the Tropical Australian Coast: An Archaeological Study of the Darwin Region by Patricia M. Bourke | Sandra Bowdler

Secrets at Hanging Rock by Alan Watchman | Claire St George

Dirty Diggers: Tales from the Archaeological Trenches by Paul Bahn | Duncan Wright

Documentary Filmmaking for Archaeologists by Peter Pepe and Joseph W. Zarzynski | Karen Martin-Stone

The Dendroglyphs or 'Carved Trees' of New South Wales by Robert Etheridge | Jeanette Hope

Consultation and Cultural Heritage: Let us Reason Together
by Claudia Nissley and Thomas F. King | Lynley A. Wallis

Backfill

Obituary: Emmett Connelly

Obituary: Gaye Nayton

Fellows of the Australian Academy of the Humanities

Minutes of the 2103 AAA AGM

Big Man and Small Boy Awards

AAA Award and Prize Winners 2013
The first Australian Synchrotron powder diffraction analysis of pigment from a Wandjina motif in the Kimberley, Western Australia

Jillian Huntley, Helen Brand, Maxime Aubert and Michael J. Morwood

Abstract

We report the identification of minerals in stratified paint layers from a Wandjina motif in the central Kimberley region, Western Australia, via synchrotron powder diffraction. Interpreting our findings with reference to previous pigment characterisations of Wandjina motifs, we outline the potential of this method for rock art investigations. We particularly highlight the implications of successful major and minor phase identification in very small (~3 µg) pigment samples. The results of this pilot study show that crystallographic data is critical in helping to separate environmental/cultural signatures from post-depositional processes within anthropogenically applied pigments. In Wandjina rock art, crystallography facilitates the examination of the cultural context of rock art production within an assemblage ethnographically known to have undergone regular, ritual repainting.

Introduction

The characterisation of crystal structure—the arrangement of atoms in inorganic materials (Jercher et al. 1998:385)—is a critical part of holistic investigations of mineral pigments used for rock art production. This was recognised by conservation scientists during the very early stages of the Australian Synchrotron project (Creagh et al. 2007; O’Neill et al. 2004) and, internationally, the vastly reduced sampling requirements of synchrotron powder diffraction have been noted as facilitating the examination of culturally significant materials (Hradilová and Žižak 2011). Mineralogical data can provide vital information for the archaeological study of rock art by describing the physical properties, and likely geomorphic procurement contexts, of pigments (Rapp and Hill 2006:196; Švarcová et al. 2011). In addition, crystallography of rock art pigments has been used to differentiate and define post-depositional processes (Ford et al. 1994) and as a proxy record for palaeoclimatic conditions (Goodall et al. 2009). This article reports the results of a pilot investigation of stratified paints from a Wandjina motif in Ngarinyin Country in the central Kimberley using synchrotron powder diffraction. Our results demonstrate that major and minor phase identification of discrete painting episodes through time is possible in a rock art tradition ethnographically known to have undergone regular ritual repainting (Blundell 1974; Crawford 1968).

Synchrotron Radiation

The application of high resolution synchrotron radiation heralds a significant breakthrough in terms of the opportunity to gain more refined structural data by overcoming the limitations of previous laboratory-based powder x-ray diffraction (XRD) analyses. Conventional XRD analysis has been fundamentally constrained in rock art

1 We have retained the spelling as reported in the academic literature at the time when the sample analysed was collected (ca 1996). We intend no offence by retaining this historical spelling, and acknowledge that the present nomenclature of Aboriginal traditional owners may vary.
research applications by initial sample sizes in the order of several grams (Crawford and Clarke 1976; Ford et al. 1994; Ward et al. 2001; Watchman et al. 1997) compared to the synchrotron powder diffraction beamline, which typically requires a sample in the order of ~3 mg. In addition, data collection times are greatly reduced at a synchrotron, in the order of 5 minutes per sample, compared to many hours for a conventional laboratory XRD machine. The exceptional high resolution of the synchrotron also allows for easy differentiation between phases compared to the peak overlap often experienced in conventional XRD spectra.

Mineral pigments, often termed ‘earth’ pigments, are generally coarsely described in relation to their physical structure as ochres and/or clays. The crystallography of mineral pigments, specifically minor phases, is important, as there is significant diversity in formation processes and, therefore, the geomorphic contexts in which deposits are found (Hradil 2012:86). In Aboriginal Australia, where landscape is so innately a part of culture, knowing the geographic origin of minerals offers researchers insights into past cultural landscapes (Head 1993; McBryde 1997), as well as continuing cultural traditions (Clarke 1976; Crawford and Clarke 1976; Mosby 1993; O’Connor et al. 2008; Randolph and Clarke 1987). The low backgrounds and orders of magnitude increase in signal-to-noise ratios available at synchrotron beamlines make this technique sensitive to small fractions (<1%) of minor mineral phases, which may be crucial to determining the geomorphic context of a particular pigment.

Previous laboratory XRD analyses of Wandjina rock art motifs have produced composite diffraction spectra derived from homogenised powder analytes rather than discrete, stratified painting episodes (Figure 1) (Crawford 1968, 1977; Crawford and Clarke 1976; Ward et al. 2001). In contrast, synchrotron powder diffraction offers opportunities to collect high resolution data sets with small sample requirements, facilitating the examination of discrete stratified paint (and accretion) layers. An examination of the mineralogy of the stratified layers observed in exfoliated rock art paint flakes has significant implications for geochronological, archaeological and material science (conservation) investigations and may yield data relating to:

- The highly complex geomorphic environment of rockshelters in subtropical (palaeo) climates (Bowdler 2005; Huntley et al. in press; MacLeod and Haydock 2008; MacLeod et al. 1997; Wyrwoll et al. 2012);
- The cultural context of rock art production via changes in paint sources and recipes through time (Ford et al. 1994; Huntley et al. in press; Thomas 1998); and,
- The relationship between stratified paint layers and observed post-depositional mineral phase transitions (Ford et al. 1994).

Foundation studies into the physical properties and durability of distinctive huntite pigments from Wandjina rock art have shown that the mineral is highly alkaline, resulting in chemical reactions with the rock substrate and other mineral pigments (Clarke 1977:61). In addition, the small (1–2 µm), uniform particle size of huntite means it is easily dispersed in water, allowing thick suspensions of the pigment to be applied as poorly coherent layers of paint. The porosity of these layers has been observed to create a network of capillaries within pigment layers that can draw water into the rock art with enough force to cause disruption of paintings (Clarke 1977:61). These attributes, combined with differential movement of mineral paint layers with different properties (such as less hydrous, acidic to neutral iron oxide, clay and/or mica), over a variety of changing micrometric conditions, have been posited as the cause of interstrata failures, or flaking, in Wandjina rock art (Clarke 1977:61). In our opinion, the points of greatest weakness, and the microstrata therefore most susceptible to interlayer failures, would be those between discrete painting episodes. Discrete painting episodes of Wandjina rock art have been observed as often starting with a layer of white paint that obscures the underlying motif (Crawford 1968; Randolph and Clarke 1987), though this is not always the case (O’Connor et al. 2008). Where motifs, or entire panel compositions, are superimposed over older existing rock art it follows that stronger cohesion, with some admixture or bleeding of coevally applied paints, will be created between damp paint layers of the freshly executed painting, when compared to the pre-existing, weathered rock art underlying it. The strong adhesion of a small number of paint layers observed in the two subsamples analysed here is therefore thought to represent discrete, stratified painting episodes.

The Sample

The analysed flake of exfoliated stratified paint was collected from the eyes of a Wandjina motif in a rockshelter in the central Kimberley. This specimen was one of a number of samples collected during a chronologically focused research programme in the mid-1990s (Morwood et al. 1994, 2010; Roberts et al. 1997; Watchman et al. 1997). Through direct 14C dating, the production of Wandjina motifs has been established as having begun at least 4000 years ago (2457–2033 BCE), with evidence for ‘classic’ stratified Wandjina motif production appearing more recently, from 1634 CE to the present (Morwood et al. 2010:5).

Two very small ‘flecks’ of pigment, each >1 mm in greatest dimension (Figure 2), were acquired from the aluminium foil in which the sample had been wrapped since its original collection. The paint layers within the flecks were probed with a scalpel under magnification and could not be further separated. The flecks contained an estimated 2–4 layers of pigment, though the precise stratification was difficult to establish even under high magnification, owing to the adhesion and admixture of pigment layers. As we have argued above, we believe each pigment fleck represents a
discrete, stratified painting episode on the rock art panel. The exact stratigraphic context of the subsamples could not be established as the flecks were already separated from the main paint flake. Rather, the examination of minerals contained within the discrete painting episodes was undertaken as a proof of concept, designed to inform subsequent archaeometric analyses of Wandjina rock art.

Each fleck was designated with a subsample number. Subsample 1 was a black fleck that, on closer inspection, had at least one, possibly more, layers of white pigment adhered to one side (either under- or overlying the black pigment) that, when ground during sample preparation, produced a dark grey hue. Subsample 2 had an overall pink hue containing a layer of red paint and at least one, possibly two, layers of white pigment (one possibly overlying and one underlying the red paint). When ground during sample preparation, Subsample 2 produced a light grey hue, indicating that a layer of black pigment may also have been incorporated into the fleck, though this was not visible prior to grinding.

Method

Each subsample was ground to a fine powder in a mortar and pestle, loaded into a 0.3 mm diameter borosilicate capillary and mounted onto the diffractometer at the Australian Synchrotron powder diffraction beamline (Wallwork et al. 2007). The samples were positioned in the diffractometer centre and spun at ~1 Hz during data collection. Datasets were collected at a refined wavelength of 0.95356 Å, from 5–85° 2Theta, using the MYTHEN microstrip detector (Bergamaschi et al. 2010), a position sensitive detector which allows for the collection of 80° of 2Theta simultaneously with a step size of 0.002°. Data were collected for 5 minutes per detector position, a total of 10 minutes per sample.

Phase identification was undertaken using Panalytical’s Highscore Plus equipped with the ICDD PDF4 database (Fawcett et al. 2009). Owing to the high clay and amorphous content of the subsamples, full quantification was not possible; however, indicative relative amounts are reported for each crystalline constituent to serve as semi-quantitative indices of the composition of these multi-phase pigments.

Results

The minerals identified and their approximate weight percentages are reported in Table 1. Approximate weight percentages are useful for understanding the relative composition of the rock art pigment and prove that it is possible to obtain high resolution, semi-quantitative mineral datasets using very small samples. This proof of concept experiment demonstrates that mineralogical identification of discrete, stratified Wandjina pigment applications (painting episodes) can be readily achieved using synchrotron powder diffraction.

Comparison with Previous Kimberley Pigment Studies and Preliminary Interpretations

The mineral identifications reported here are consistent with the findings of previous conventional XRD investigations of rock art and white pigment source locations in the Kimberley. That is, they are mixed minerals dominated by huntite and clay (kaolinite) (Clarke 1976 1977; Ford et al. 1994; Ward et al. 2001; Watchman 1997). Previously, Thomas (1998) performed XRD analyses on two geographically discrete white pigment ‘quarries’, demonstrating that multiple mineral phases were present in ‘raw’ white pigment sources. The quantification of composite mineral constituents within stratified paint layers may therefore provide information regarding changes in pigment sources over time (as suggested by Thomas 1998).

Mineralogical substitutions have important environmental, chronological and conservation implications (Clarke 1976, 1977; Ford et al. 1994; Goodall et al. 2009). Based on XRD spectra from amalgamated stratifications within Wandjina paint flakes (i.e. combining several painting episodes), Ford et al. (1994) suggested that post-depositional mineral alterations were occurring in rock art panels in situ. Our analysis demonstrates that the semiquantitative composition of white pigments is achievable with very small samples and therefore within discrete layers of stratified paint thought to represent individual painting episodes. Our identification of whewellite and dolomite in the two minute subsamples analysed in this pilot study shows that the minerals indicative of a proposed post-depositional transition of calcite rock art paints to calcium oxalate minerals described by Ford et al. (1994) will be visible using synchrotron powder diffraction (if occurring).

The proportion of different minerals within mixed phases may have significant applications regarding rock art conservation (the treatment of paint layers with different properties). As outlined previously, Clarke (1977:61) concluded that the properties of huntite (alkalinity, small grain size and
The first Australian Synchrotron powder diffraction analysis of pigment from a Wandjina motif in the Kimberley, Western Australia

Porosity) made this mineral inherently unstable. Our findings are consistent with this; however, we were able to define with much higher resolution the composite mineral properties of dominantly huntite, mixed mineral rock art pigment. Our identification of minor phases within discrete painting episodes may further explain the propensity to deterioration in Wandjina art noted by Clarke (1977).

Other phase identifications reported are also consistent with previous work (though much more precise). For instance, the major haematite phase (22%) present in Subsample 2 is consistent with the findings of Ford et al. (1994) and is thought to be cultural, associated with the red pigment present within the stratified Wandjina paint layers analysed (Figure 2). In contrast, the minor haematite (1%) and gibbsite (2%) in Subsample 1 are common phases in lateritic environments with high rainfall, and it is therefore not surprising that they would be present as precipitates in a central Kimberley rockshelter environment. Though aluminium phosphate has been described as a constituent in white rock art paint in the Kimberley (Watchman 1997:50–51), the aluminium reported in Subsample 2 (21%) is pure and therefore thought to derive from the visibly perishing aluminium foil in which the sample was stored post-1996.

Implications for Ongoing and Future Research

The results of this pilot project demonstrate that mineralogical identifications can be achieved on minute rock art pigment samples (3 µg), and therefore within discrete painting episodes, using synchrotron powder diffraction. High resolution, semi-quantitative, mineral data will be invaluable for exploring changes through time in stratified, laminar rock art paint samples. This is the first time stratified minerals have been examined from repainted Wandjina motifs and further research of this type will provide new insights into the environmental and cultural context of rock art production in the Kimberley. High resolution mineralogical data will

Figure 3a Synchrotron powder diffraction phase diagram for Subsample 1.

Figure 3b Synchrotron powder diffraction phase diagram for Subsample 2.
be critical in helping to separate environmental/cultural signatures from post-depositional processes within samples, thereby facilitating an examination of the cultural context of rock art production by observing change or continuity in the choice of pigments by artists over time, preserved within layers of paintings that are ethnographically known to have undergone regular, ritual repainting (Blundell 1974; Crawford 1968). The resolution achievable using synchrotron powder diffraction has also facilitated significantly greater sensitivity of minor phase identification, which will be instrumental in determining the geomorphic context of mineral pigment sources (Hradilová and Žižak 2011:334-5).

Acknowledgements

We acknowledge the traditional custodians of the central Kimberley, the Ngarinyin people, from whose Country and culture the sample analysed originates. The sample was collected in 1996 by (the late) Michael J. Morwood and collaborators, including (the late) Grahame Walsh, under Department of Indigenous Affairs s.16 Permit No.166. Jillian Huntley acknowledges the Kimberley Foundation of Australia for their logistical support through her Department of Indigenous Affairs s.16 Permit No.166. Jillian Huntley acknowledges the Kimberley Foundation of Australia for their logistical support through her direct support through her Department of Indigenous Affairs s.16 Permit No.166.

Table 1 Mineral phase identifications for Subsamples 1 and 2. * = No clay preparations (such as settling) were undertaken; ~ = Likely to be derived from the (visibly perishing) aluminium foil in which the sample was stored.

<table>
<thead>
<tr>
<th>Subsample</th>
<th>Reference Code</th>
<th>Compound</th>
<th>Formula</th>
<th>Relative Amount of Crystalline Material (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsample 1</td>
<td>96-900-0985</td>
<td>Huntite</td>
<td>CaMg₃(CO₃)₄</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>96-901-2603</td>
<td>Quartz</td>
<td>SiO₂</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>96-900-9235</td>
<td>Kaolinite*</td>
<td>Al₂SiO₅(OH)₄</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>96-901-1241</td>
<td>Haematite</td>
<td>Fe₂O₃</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>96-900-3525</td>
<td>Dolomite</td>
<td>CaMg(CO₃)₂</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>96-900-0911</td>
<td>Ilmenite</td>
<td>Fe₆TiO₁₂</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>96-720-6076</td>
<td>Anatas</td>
<td>TiO₂</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>96-900-3875</td>
<td>Gibbsite*</td>
<td>Al(OH)₃</td>
<td>2</td>
</tr>
<tr>
<td>Subsample 2</td>
<td>96-900-0985</td>
<td>Huntite</td>
<td>CaMg₃(CO₃)₄</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>96-901-2603</td>
<td>Quartz</td>
<td>SiO₂</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>96-900-0140</td>
<td>Haematite</td>
<td>Fe₂O₃</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>96-900-8461</td>
<td>Aluminium~</td>
<td>Al</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>96-900-9231</td>
<td>Kaolinite</td>
<td>Al₂SiO₅(OH)₄</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>96-900-9087</td>
<td>Anatas</td>
<td>TiO₂</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>96-900-0764</td>
<td>Whewellite</td>
<td>Ca(C₂O₄)(H₂O)</td>
<td>8</td>
</tr>
</tbody>
</table>

References

The first Australian Synchrotron powder diffraction analysis of pigment from a Wandjina motif in the Kimberley, Western Australia

